Effects of 3-Substituents upon Orientation in the 1,3-Dipolar Cycloaddition Reaction Between 3-Substituted Pyridine \mathbf{N}-Imides and Ethyl Propiolate: Syntheses of Ethyl 4- and 6-Substituted Pyrazolo[1,5-a]-pyridine-3-carboxylates

By Yasumitsu Tamura,* Yoshio Sumida, Yasuyoshi Miki, and Masazumi Ikeda, Faculty of Pharmaceutical Sciences, Osaka University, Toneyama, Toyonaka, Osaka, Japan

Quantitative data are presented relating to the effects of a series of 3 -substituents upon orientation in the formation of ethyl pyrazolo[1.5-a]pyridine-3-carboxylates by a 1.3-dipolar cycloaddition reaction between 3 -substituted pyridine N-imides and ethyl propiolate. The observed regioselectivity is discussed in terms of electronic and steric factors as well as hydrogen-bond formation.

1,3-Dipolar cycloaddition reactions between pyridine N-imides and activated alkynes and alkenes [e.g. $(\mathrm{III}) \longrightarrow(\mathrm{V})$ or (VI)] ${ }^{1-9}$ have been used as synthetic ${ }^{1}$ R. Huisgen, R. Grashey, and R. Krischke, Tetrahedron Letters, 1962, 387.
${ }_{2}$ T. Okamoto, M. Hirobe, Y. Tamai, and E. Yabe, Chem. and Pharm. Bull. (Japan), 1966, 14, 506.
${ }^{3}$ T. Okamoto, M. Hirobe, and E. Yabe, Chem. and Pharm. Bull. (Japan), 1966, 14, 523.
$4{ }^{4}$ V. Boekelheide and N. A. Fedoruk, J. Org. Chem., 1968, 33, 2062.
${ }^{5}$ T. Sasaki, K. Kanematsu, and Y. Yukimoto, J. Chem. Soc. (C), 1970, 481.
routes to pyrazolo[1,5-a]pyridine derivatives. If 3 substituted pyridines are used in this reaction, the possibility exists of obtaining either the 4 - or the 6 substituted pyrazolo $[1,5-a]$ pyridine. Available data ${ }^{3,6,7}$

[^0]indicate that 3 -methylpyridine N-imide produces predominantly, or in some cases exclusively, 4-methylpyrazolo[$1,5-a$]pyridines. However, since there are no reports of systematic studies concerning the effects of 3 substituents upon orientation, it has been difficult hitherto to discuss the actual nature of the effects. ${ }^{10}$ We now report quantitative data relating to the effects of a
diagnostic differences: those of 4 -substituted pyrazolo[$1,5-a]$ pyridines (V) show two broad doublets due to H-5 ($\tau 1 \cdot 40-3.58)$ and $\mathrm{H}-7(\tau 1 \cdot 30-2.01)$ and a doublet of doublets or a triplet due to H-6 ($\tau 2 \cdot 90-3.39$), whereas those of the 6 -substituted isomers (VI) show an AB quartet due to $\mathrm{H}-4(\tau 1.70-2.03)$ and $\mathrm{H}-5(\tau 2.12-2.9)$ and a broad singlet due to $\mathrm{H}-7(\tau 0.29-1.73) . \ddagger$

(VII)

(VIII)
series of 3 -substituents upon orientation in the cycloaddition reaction between 3 -substituted pyridine N imides (III) and ethyl propiolate.

A slight modification of the procedure of Boekelheide and Fedoruk ${ }^{4}$ was used, in which mixtures of N-aminopyridinium mesitylenesulphonates (II) ${ }^{11}$ and ethyl propiolate in the presence of anhydrous potassium carbonate in dimethylformamide * were stirred at room temperature for 3 h to give ethyl pyrazolo $[1,5-a]$ -pyridine-3-carboxylates [(V) and (VI)] in moderate yields, accompanied by coloured intractable material. The 4 - and 6 -isomers were separated by preparative t.l.c. on alumina. The product ratio was determined by g.l.c. analysis of the crude reaction mixture obtained after evaporation of the solvent, and the results are summarised in the Table. Structures were readily assigned on the basis of microanalyses [oily compounds were characterised as the crystalline carboxylic acids (VII) and (VIII) $\dagger]$ and i.r., mass, u.v., and n.m.r. spectra. In particular, the n.m.r. spectra of the two isomers show

[^1]
(IX)

The results in the Table indicate that (i) unless a large substituent is present at the 3 -position, the cycloaddition occurs preferentially at $\mathrm{C}-2$ of the pyridine ring, regardless of the electron-donating or electron-withdrawing character of the substituent; (ii) steric hindrance by a 3 substituent to attack at C-2 becomes important with the larger 3 -substituents; and (iii) the 3 -hydroxy-, 3 -amino-, and 3 -acetamido-pyridine N-imides produce exclusively 4 -substituted pyrazolo $[1,5-a]$ pyridines (V).

These data can be rationalised in terms of electronic and steric factors and of hydrogen-bond formation. As already suggested by Huisgen, ${ }^{12,13}$ the formation of compounds (V) and (VI) must proceed in two stages: a concerted 1,3-dipolar cycloaddition between (III) and ethyl propiolate leading to the dihydropyridine intermediate (IV), followed by a dehydrogenation to give the final products [(V) and (VI)]. Since most 1,3-dipolar cycloadditions are known to be stereospecific and hence irreversible, it is reasonable to assume that the first step (III) \rightarrow (IV) is rate determining and responsible for determining the orientation. In general, 1,3-dipolar

[^2]cycloadditions have been discussed in terms of a twophase transition state. ${ }^{12,13}$ In the present case, 3substituted pyridine N-imides (III) would be expected to produce two primary adducts (IV) corresponding to two orientations of the 1,3 -dipole and ethyl propiolate in the activated complex leading to the transition state (see Figure). Of the two possible orientations,* approach of

(a)

(b)

Figure
the two components as shown in (a) would be more favoured owing to stabilisation by resonance ${ }^{14}$ [it being assumed that the transition state resembles the dihydropyridine intermediate (IV)].

Formation of ethyl pyrazolo[1,5-a]pyridine-3-carboxylates

	R	(V)	(VI)
a;	Me	$68^{a}(25)^{\text {b }}$	32 (16)
b;	Et	70 (23)	30 (11)
c;	$\mathrm{CH}_{2} \mathrm{Ph}$	63 (31)	37 (15)
d;	OH	100 (8) ${ }^{\circ}$	0
e;	NH_{2}	100 (8)	0
f;	NHAc	100 (14)	0
g;	NMeAc	73 (20)	27 (13)
h;	Cl	64 (6)	36 (10)
i;	Br	49 (13)	$51(16)$
j;	I	44 (11)	56 (14)
k;	CN	73 (17)	27 (9)
	$\mathrm{CO}_{2} \mathrm{Et}$	65 (31)	35 (11)
m;	CONEt_{2}	36 (17)	64 (46)

a Product ratio determined by g.l.c. analyses. ${ }^{b}$ Isolated yield (\%). ${ }^{c}$ Accompanied by a trace of an unidentified product.

The increased proportion of the product (VI) with increase of the bulk of the 3 -substituents as seen in the two cases (IIIh) \rightarrow (IIIj) and (IIIk) \rightarrow (IIIm) may be accounted for by steric factors. Approach of the two components as shown in the Figure (a) would be expected to be hindered as a result of non-bonded interaction between the 3 -substituent on the 1,3 -dipole and the ethoxycarbonyl group of ethyl propiolate in the transition state.

The exclusive formation of (Vd-f) from (IIId-f), may be ascribed to the formation of a hydrogen bond between the hydrogen atom on the 3 -substituent and the carbonyl group of the dipolarophile, whereby the transition state shown in the Figure (a) can gain extra stabilis-

[^3]ation. This rationalisation is supported by the fact that the reaction of (IIIg) with ethyl propiolate gave a mixture of (V) and (VI) in the ratio 73:27. Apparently the hydrogen bond cannot be formed in this example, so that this ratio can be considered to reflect the general tendency for preferential attack at C-2 and the steric effect of the substituent.

EXPERIMENTAL

N.m.r. spectra were determined with a Hitachi R-20A spectrometer (tetramethylsilane as internal standard). I.r. spectra were recorded with a Hitachi EPI-G2 spectrophotometer, and u.v. spectra with a Hitachi 124 spectrophotometer. G.l.c. was performed on a Hitachi K53 gas chromatograph [nitrogen as carrier gas; $3.3 \mathrm{ft} \times \frac{1}{8}$ in column packed with butanediol succinate polyester (BSP) as a 15% coating on Celite 545 at 220°].
N-Aminopyridinium Mesitylenesulphonates (II).-The N aminopyridinium mesitylenesulphonates ($\mathrm{IIa}-\mathrm{m}$) were prepared by the procedure described in ref. $11 . \dagger$

General Procedure for 1,3-Dipolar Cycloaddition Reactions. -Potassium carbonate (3.75 mmol) and ethyl propiolate (5 mmol) were added to a stirred solution of the N-aminopyridinium mesitylenesulphonate (II) (2.5 mmol) in dimethylformamide (5 ml) at 0°. The mixture was stirred vigorously for 3 h at room temperature and the solvent was evaporated off in vacuo. The residue was dissolved in chloroform and insoluble material was filtered off. The filtrate was concentrated in vacuo and the residue was separated by p.l.c. [alumina PF_{254}; chloroform-benzene ($1: 10$) or ether-light petroleum (b.p. $30-60^{\circ}$) ($1: 10$)] to give the products (V) and (VI). Yields and product distribution are summarised in the Table. The oily compounds (Vc and m) and (VIm) were characterised by conversion into the crystalline carboxylic acids. Compound (Vl) gave pyrazolo[1,5-a]pyridine-4-carboxylic acid (IX) under hydrolytic conditions.

Ethyl 4-methylpyrazolo[1,5-a]pyridine-3-carboxylate (Va) had m.p. 60-61 ${ }^{\circ}$ [from light petroleum (b.p. 30-60 ${ }^{\circ}$)] (Found: C, 64.7; H, 6.0; N, 13.9. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 64.7 ; \mathrm{H}, 5.9 ; \mathrm{N}, 13.7 \%$); $\nu_{\text {max. }}(\mathrm{KCl}) 1705 \mathrm{~cm}^{-1}$; $\lambda_{\text {max. }}$ (EtOH) $218.5 \mathrm{sh}, 222.5,242,249.5 \mathrm{sh}$, and $299.5 \mathrm{~nm}(\log \varepsilon$ $4 \cdot 52,4.59,3.84,3.77$, and 4.10); the 6-methyl isomer (VIa) had m.p. 82-83 ${ }^{\circ}$ [from light petroleum (b.p. 30-60 ${ }^{\circ}$)] (Found: C, $64.7 ; \mathrm{H}, 5.9 ; \mathrm{N}, 13.3 \%$) ; $\nu_{\text {max }}(\mathrm{KCl}) 1675 \mathrm{~cm}^{-1}$; $\lambda_{\text {max. }}(\mathrm{EtOH}) 219 \mathrm{sh}, 221.5,225.5,242,248 \mathrm{sh}$, and 305 nm $(\log \varepsilon 4 \cdot 46,4 \cdot 49,4 \cdot 56,4 \cdot 00,4 \cdot 00$, and 3.97); the 4 -ethyl derivative (Vb) had m.p. $30-30 \cdot 5^{\circ}$ (from ethanol-water) (Found: $\mathrm{C}, 66 \cdot 3 ; \mathrm{H}, 6.6 ; \mathrm{N}, \mathbf{1 2 . 7} . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C , $66.0 ; \mathrm{H}, 6.5 ; \mathrm{N}, 12.8 \%$); $\nu_{\text {max. }}(\mathrm{KCl}) 1700 \mathrm{~cm}^{-1}$; $\lambda_{\text {max }}$ (EtOH) 218sh, 222, 242, 250sh, and $300 \mathrm{~nm}(\log \varepsilon 4 \cdot 39,4 \cdot 48$, $3.71,3.65$, and 3.98); the 6 -ethyl isomer (VIb) had m.p. $53.5-55^{\circ}$ (from ethanol-water) (Found: C, 65.9; H, 6.6; $\mathrm{N}, 12.8 \%$); $\nu_{\max }(\mathrm{KCl}) 1690 \mathrm{~cm}^{-1}$; $\lambda_{\max }(\mathrm{EtOH}) 221.5$, $225 \cdot 5,243,248 \mathrm{sh}$, and $304 \mathrm{~nm}(\log \varepsilon 4 \cdot 47,4 \cdot 55,3.98,3 \cdot 96$, and 3.96); the 4 -benzyl derivative (Vc) was an oil, $v_{\text {max }}$ $\left(\mathrm{CHCl}_{3}\right) 1705 \mathrm{~cm}^{-1}$; $\lambda_{\text {max. }}(\mathrm{EtOH}) 219,224,242,251 \cdot 5 \mathrm{sh}$, and $302.5 \mathrm{~nm}(\log \varepsilon 4.49,4.50,3.87,3.78$, and 3.99$)$; the 6 benzyl isomer (VIc) had m.p. 93-94 ${ }^{\circ}$ [from light petroleum (b.p. $60-80^{\circ}$)] (Found: C, 72.8; H, 5.8; N, 9.9. $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 72.8 ; \mathrm{H}, 5.75 ; \mathrm{N}, 10.0 \%$) ; $\nu_{\text {max. }}$
${ }^{14}$ H. L. Bradlow and C. A. Vanderwerf, J. Org. Chem., 1951, 16, 73.
$(\mathrm{KCl}) 1695 \mathrm{~cm}^{-1}$; $\lambda_{\max }(\mathrm{EtOH}) 223 \mathrm{sh}, 226,241 \cdot 5,249 \mathrm{sh}$, and $305 \mathrm{~nm}(\log \varepsilon 4 \cdot 50,4 \cdot 51,4 \cdot 17,4 \cdot 11$, and $4 \cdot 02)$; the 4 -hydroxydevivative (Vd) had m.p. $98-98.5^{\circ}$ [from light petroleum (b.p. $30-60^{\circ}$)] (Found: C , $58 \cdot 5 ; \mathrm{H}, 4 \cdot 7$; $\mathrm{N}, 13 \cdot 3$. $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 58.25 ; \mathrm{H}, 4.9 ; \mathrm{N}, 13 \cdot 6 \%$); $\nu_{\max }$ $(\mathrm{KCl}) 1625 \mathrm{~cm}^{-1}$; $\lambda_{\max .}(\mathrm{EtOH}) 225,277 \mathrm{sh}, 288,315$, and 328 $\mathrm{nm}(\log \varepsilon 4 \cdot 27,3 \cdot 70,3 \cdot 89,4 \cdot 25$, and $4 \cdot 27$); the 4 -aminoderivative (Ve) had m.p. $71-73^{\circ}$ [from light petroleum (b.p. $30-60^{\circ}$)] (Found: C, 58.2; H, 5.5; N, 20.0. $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 58.5 ; \mathrm{H}, 5.4 ; \mathrm{N}, 20.5 \%$) ; $\nu_{\text {max }}(\mathrm{KCl}) 1685$ and $1620 \mathrm{~cm}^{-1}$; $\lambda_{\max }(\mathrm{EtOH}) 223 \mathrm{sh}, 298$, and $335 \mathrm{~nm}(\log \varepsilon 3 \cdot 96$, $3 \cdot 95$, and $4 \cdot 17$); the 4 -acetamido-derivative (Vf) had m.p. 135-136 ${ }^{\circ}$ [from light petrolcum (b.p. 60-80 $)$] (Found: $\mathrm{C}, 58.3 ; \mathrm{H}, 5.4 ; \mathrm{N}, 16.7 . \quad \mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 58.3 ; \mathrm{H}$, $5.3 ; \mathrm{N}, 17 \cdot 0 \%$); $\nu_{\max }(\mathrm{KCl}) 1695,1650$, and $1630 \mathrm{~cm}^{-1}$; $\lambda_{\text {max. }}(\mathrm{EtOH}) 216,232 \mathrm{sh}, 255 \cdot 5,264 \mathrm{sh}, 304 \mathrm{sh}, 317$, and 331 $\mathrm{nm}(\log \varepsilon 4 \cdot 41,4 \cdot 21,3 \cdot 81,3 \cdot 77,4 \cdot 15,4 \cdot 22$, and $4 \cdot 15)$; the 4 (N -methylacetamido)-derivative (Vg) had m.p. 141-142 ${ }^{\circ}$ [from benzene-light petroleum (b.p. 60-80 ${ }^{\circ}$) (Found: C, $59.9 ; \mathrm{H}, 5.9 ; \mathrm{N}, 15.9 . \quad \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 59.8 ; \mathrm{H}$, $5.8 ; \mathrm{N}, 16.1 \%) ; \quad \nu_{\max }(\mathrm{KCl}) 1710$ and $1660 \mathrm{~cm}^{-1} ; \lambda_{\max }$ (EtOH) 219sh, 223, 238, 246sh, 292.5sh, and $306 \mathrm{~nm}(\log \varepsilon$ $4.38,4.43,3.93,3.85,3.81$, and 3.82); the $6-(\mathrm{N}-m e t h y l-$ acetamido)-isomer (VIg) had m.p. 172-173.5 ${ }^{\circ}$ [from ben-zene-light petroleum (b.p. $60-80^{\circ}$)] (Found: C, $59 \cdot 8$; H, $5.8 ; \mathrm{N}, 15.9 \%) ; \nu_{\max .}(\mathrm{KCl}) 1700$ and $1660 \mathrm{~cm}^{-1} ; \lambda_{\max }$ (EtOH) 220, 225sh, $242 \mathrm{sh}, 247$, and $301 \mathrm{~nm}(\log \varepsilon 4 \cdot 29,4 \cdot 28$, $4 \cdot 23,4 \cdot 24$, and 3.87) ; the 4 -chloro-derivative (Vh) had m.p. $60-60 \cdot 5^{\circ}$ [from light petroleum (b.p. $60-80^{\circ}$)] (Found: C, $53 \cdot 2 ; \mathrm{H}, 4.0 ; \mathrm{N}, 12 \cdot 6 . \quad \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{ClN}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 53 \cdot 5 ; \mathrm{H}$, $4.0 ; \mathrm{N}, 12.5 \%)$; $\nu_{\max .}(\mathrm{KCl}) 1720 \mathrm{~cm}^{-1} ; \lambda_{\max }$ (EtOH) 219.5 sh , $224,239.5,297 \mathrm{sh}, 306$, and $318.5 \mathrm{~nm}(\log \varepsilon 4.39$, $4.46,3.86,3 \cdot 89,3 \cdot 89$, and 3.85); the 6 -chloro-isomer (VIh) had m.p. $110-111^{\circ}$ [from light petroleum (b.p. $60-80^{\circ}$)] (Found: C, $53.5 ; \mathrm{H}, 4 \cdot 1 ; \mathrm{N}, 12.2 \%$); $\nu_{\max }(\mathrm{KCl}) 1685 \mathrm{~cm}^{-1}$; $\lambda_{\text {max. }}(\mathrm{EtOH}) 225 \cdot 5,229,241 \cdot 5,247 \mathrm{sh}$, and $309 \mathrm{~nm}(\log \varepsilon 4.45$, $4.54,4 \cdot 26,4 \cdot 23$, and 3.88); the 4 -bromo-derivative (Vi) had m.p. 68-69 [from light petroleum (b.p. $60-80^{\circ}$)] (Found : C, $44.9 ; \mathrm{H}, 3 \cdot 4 ; \mathrm{N}, 10 \cdot 4 . \quad \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 4 \cdot 46$; $\mathrm{H}, 3.4 ; \mathrm{N}, 10.4 \%$) ; $\nu_{\max .}(\mathrm{KCl}) 1725 \mathrm{~cm}^{-1}$; $\lambda_{\max }(\mathrm{EtOH})$ $219 \cdot 5 \mathrm{sh}, 224,241 \cdot 5 \mathrm{sh}, 296 \cdot 5 \mathrm{sh}, 309$, and $321 \mathrm{sh} \mathrm{nm}(\log \varepsilon 44 \cdot 6$. $4.47,3.90,3.91,3.93$, and 3.87); the 6 -bromo-isomer (VIi) had m.p. 119-120 [from light petroleum (b.p. 60-80 $)$] (Found: C, $44.8 ; \mathrm{H}, 3.45 ; \mathrm{N}, 10.15 \%$); $\nu_{\max .}(\mathrm{KCl}) 1680$ cm^{-1}; $\lambda_{\max }(\mathrm{EtOH}) 227 \mathrm{sh}, 231,242,248.5 \mathrm{sh}$, and 309 nm $(\log \varepsilon 4 \cdot 42,4.47,4 \cdot 31,4 \cdot 28$, and 3.86); the 4 -iodo-derivative (Vj) had m.p. $80-81^{\circ}$ [from light petroleum (b.p. $60-80^{\circ}$)] (Found: C, $38 \cdot 1 ; \mathrm{H}, 3 \cdot 0 ; \mathrm{N}, 8.8 . \mathrm{C}_{10} \mathrm{H}_{9} \mathrm{IN}_{2} \mathrm{O}_{2}$ requires C , $38.0 ; \mathrm{H}, 2.9 ; \mathrm{N}, 8.9 \%$) ; $\nu_{\max }(\mathrm{KCl}) 1715 \mathrm{~cm}^{-1} ; \lambda_{\max }$ (EtOH) 219sh, 221.5, 243sh, 307, and 315sh nm (log $\varepsilon 4 \cdot 37$, $4 \cdot 40,3 \cdot 92,3 \cdot 84$, and $3 \cdot 76$); the 6 -iodo-isomer (VIj) had m.p. $120-121^{\circ}$ [from light petroleum (b.p. 60-80 $)$] (Found: $\mathrm{C}, 38.0 ; \mathrm{H}, 3.0 ; \mathrm{N}, 8.7 \%$) ; $\nu_{\max }(\mathrm{KCl}) 1680 \mathrm{~cm}^{-1} ; \lambda_{\max }$. (EtOH) $217.5 \mathrm{sh}, 221,247 \mathrm{sh}, 251,310 \cdot 5$, and $322 \mathrm{sh} \mathrm{nm}(\log \varepsilon$ $4 \cdot 22,4 \cdot 22,4 \cdot 45,4 \cdot 47,3 \cdot 89$, and $3 \cdot 83$); the 4 -cyano-derivative
(Vk) had m.p. $174-175^{\circ}$ [from benzene-light petroleum (b.p. $60-80^{\circ}$)] (Found: $\mathrm{C}, 61 \cdot 3 ; \mathrm{H}, 4 \cdot 3 ; \mathrm{N}, 19.5$. $\mathrm{C}_{11} \mathrm{H}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 61 \cdot 4 ; \mathrm{H}, 4.2 ; \mathrm{N}, 19.5 \%\right)$; $v_{\max }(\mathrm{KCl})$ 2210 and $1720 \mathrm{~cm}^{-1}$; $\lambda_{\text {max }}$ (EtOH) $226.5 \mathrm{sh}, 231 \cdot 5,244.5$, $249 \mathrm{sh}, 278 \mathrm{sh}, 288,297$, and $331 \mathrm{~nm}(\log \varepsilon 4 \cdot 23,4 \cdot 32,4 \cdot 30$, $4 \cdot 29,3 \cdot 49,3 \cdot 61,3 \cdot 65$, and $3 \cdot 62$); the 6 -cyano-isomer (VIk) had m.p. $140-140 \cdot 5^{\circ}$ [from benzene-light petroleum (b.p. $60-80^{\circ}$)] (Found: C, 61.1; H, $4 \cdot 1 ; \mathrm{N}, 20.0 \%$) ; $\nu_{\text {max. }}(\mathrm{KCl})$ 2230 and $1695 \mathrm{~cm}^{-1}$; $\lambda_{\max }(\mathrm{EtOH}) 216,234 \mathrm{sh}, 240 \cdot 5,246 \cdot 5$, 299 , and $308 \mathrm{sh} \mathrm{nm}(\log \varepsilon 4 \cdot 21,4.50,4.59,4 \cdot 46,4 \cdot 06$, and 4.02); diethyl pyrazolo[1,5-a]pyridine-3,4-dicarboxylate (V1) was an oil, $v_{\max }\left(\mathrm{CHCl}_{3}\right) 1725$ and $1710 \mathrm{~cm}^{-1}$; $\lambda_{\max }$. (EtOH) $224.5,243,294$, and $318.5 \mathrm{sh} \mathrm{nm}(\log \varepsilon 4 \cdot 23,4 \cdot 03$, $3 \cdot 76$, and $3 \cdot 63$); the 3,6 -dicarboxylate (VIl) had m.p. $88-89^{\circ}$ [from benzene-light petroleum (b.p. 60-80)] (Found: $\mathrm{C}, 59.75 ; \mathrm{H}, 5 \cdot 4 ; \mathrm{N}, 10 \cdot 6 . \quad \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$ requires $\mathrm{C}, 59.5$; $\mathrm{H}, 5.4 ; \mathrm{N}, 10.7 \%$) ; $\nu_{\text {max. }}(\mathrm{KCl}) 1725,1695$, and $1630 \mathrm{~cm}^{-1}$; $\lambda_{\text {max. }}(\mathrm{EtOH}) 218,237 \mathrm{sh}, 242,248 \mathrm{sh}$, and $301 \mathrm{~nm}(\log \varepsilon 4 \cdot 31$, $4 \cdot 56,4.59,4.49$, and 4.24); ethyl 4 -dietliylcarbamoylpyrazolo $[1,5-a]$ pyridine-3-carboxylate (Vm) was an oil, $\nu_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 1715,1670$, and $1630 \mathrm{~cm}^{-1}$; $\lambda_{\text {max. }}(\mathrm{EtOH})$ $222 \cdot 5,239,248 \mathrm{sh}, 292 \mathrm{sh}$, and $306 \mathrm{~nm}(\log \varepsilon 4 \cdot 38,3 \cdot 98,3 \cdot 91$, $3 \cdot 76$, and $3 \cdot 77$) ; the 6-diethylcarbamoyl isomer (VIm) was an oil, $\nu_{\max }\left(\mathrm{CHCl}_{3}\right) 1700$ and $1620 \mathrm{cn}^{-1} ; \lambda_{\max }(\mathrm{EtOH}) 222 \cdot 5$, $242 \cdot 5,248 \mathrm{sh}$, and $297 \mathrm{~nm}(\log \varepsilon 4 \cdot 32,4 \cdot 24,4 \cdot 23$, and $3 \cdot 98$).

Pyrazolo[1,5-a]pyridine-3-carboxylic Acids [(VII) and (VIII)].-Solutions of ethyl pyrazolo[1,5-a]pyridine-3carboxylates $(0.5 \mathrm{mmol})$ in methanol (2 ml) containing 3 drops of 10% sodium hydroxide solution were refluxed for $2-3 \mathrm{~h}$. The solvent was evaporated off in vacuo and the residue was diluted with water $(3 \mathrm{ml})$ and washed with ether $(3 \mathrm{ml})$. The aqueous layer was acidified with 10% hydrochloric acid. The white precipitate was collected and recrystallised from benzene. The following pyrazolo[1,5-a]-pyridine-3-carboxylic acids were prepared from the corresponding oily esters by this procedure; 4-benzyl (VIIc) (67%), m.p. $186-187^{\circ}$ (Found: C, $71 \cdot 1 ; \mathrm{H}, 4.8 ; \mathrm{N}, 10.9$. $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires $\mathrm{C}, 71 \cdot 4 ; \mathrm{H}, 4.8 ; \mathrm{N}, 11 \cdot 1 \%$; 4diethylcarbamoyl (VIIm) (33%), m.p. 193-194 (Found: $\mathrm{C}, 60 \cdot 0 ; \mathrm{H}, 5.9 ; \mathrm{N}, 16 \cdot 2 . \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 59 \cdot 8$; $\mathrm{H}, 5.8 ; \mathrm{N}, 16.1 \%$) ; 6-diethylcarbamoyl (VIIIm) (30\%), m.p. 192-193 (Found: C, 59.8; H, 5.8; N, $15 \cdot 6 \%$).

Pyrazolo[1,5-a]pyridine-4-carboxylic Acid (IX).-This acid (IX) was obtained in 61% yield from the oily ester (Vl) (131 mg) by the procedure just described; m.p. $277-278^{\circ}$ (from benzene) (Found: C, 58.7; H, 3.95; N, 16.65%; $M^{+}, 148$, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{NO}_{2}$ requires $\mathrm{C}, 59 \cdot 3 ; \mathrm{H}, 3 \cdot 7 ; \mathrm{N}, 17 \cdot 3 \% ; M, 148$); $v_{\max .}(\mathrm{KCl}) 2650-2400$ and $1700 \mathrm{~cm}^{-1}$. The n.m.r. spectrum was not determined owing to low solubility to various solvents. The structural assignment rests on the basis of spectral data, the consideration of its origin, and the fact that its m.p. differs from that of the known isomeric 3carboxylic acid (lit., ${ }^{4} 223-224^{\circ}$).
[4/1502 Received, 22nd July, 1974]

[^0]: ${ }^{6}$ T. Yamura, A. Yamakami, and M. Ikeda, J. Pharm. Soc. Japan, 1971, 91, 1154.
 ${ }^{7}$ T. Sasaki, K. Kanematsu, and A. Kakehi, J. Org. Chem., 1971, 36, 2978 .
 ${ }_{8}{ }^{\text {T }}$. Sasaki, K. Kanematsu, and A. Kakehi, Tetrahedron Letters, 1972, 5245.
 ${ }_{9}$ Y. Tamura, Y. Miki, and M. Ikeda, J. Heterocyclic Chem., 1973, 10, 447.

[^1]: * Replacement of this solvent by methanol or chloroform had little effect on the product distribution.
 \dagger Compound (V1) was decarboxylated under hydrolytic conditions to give pyrazolo[1,5-a]pyridine-4-carboxylic acid (IX).
 \ddagger Spectroscopic details are available as Supplementary Publication No. SUP 21220 (3 pp .). For details of Supplementary Publications, see Notice to Authors No. 7 in J.C.S. Perkin I, 1974, Index Issue.

[^2]: ${ }^{10}$ For a detailed discussion of a related problem, see R. A. Abramovitch and T. G. Saha, Adv. Heterocyclic Chem., 1966, 6, 229.
 ${ }_{11}$ Y. Tamura, J. Minamikawa, Y. Miki, S. Matsugashita, and M. Ikeda, Tetrahedron Letters, 1972, 4133.

 12 R. Huisgen, Angerv. Chem. Internat. Edn., 1963, 2, 633.
 13 R. Huisgen, J. Org. Chem., 1968, 33, 2291.

[^3]: *The possibility of the formation of ethyl pyrazolo[1,5-a]-pyridine-2-carboxylates is not taken into consideration here. ${ }^{4}$
 \dagger Experimental details are given in the Supplementary Publication (No. SUP 21220).

